Quiz 2-Math 201

- Write your name and your I.D. on the booklet
- The duration of the test is one hour
- Calculators are allowed

1. (20 points) a) Find the first four terms of the Taylor series of e^{-x} and $\cos (5 x)$ centered at $a=0$.
b) Compute the limit

$$
\lim _{x \rightarrow 0} \frac{e^{-x}-1+x}{\cos (5 x)-1}
$$

c) Find an approximation of $\int_{0}^{0.1} \frac{\cos (5 x)-1}{x} d x$ with an error less than 10^{-4}.(Use the alternating series error estimation theorem)
2. (10 points) Define $f(x)=1-x$ if $0 \leq x \leq \pi$ and 0 if $\pi<x \leq 2 \pi$. In the Fourier series $f(x)=a_{0} / 2+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x$, find a_{3}.
3. (25 points)Given $f(x, y)=5 x y+\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1} y^{2 n+1}}{(2 n+1)!}$.(Hint: Write the series as a function of x and y)
a) Find the equation of the tangent plane to $z=f(x, y)$ at the point $P(\pi, 1,5 \pi)$.
b) Find the directional derivative of f at the point $P_{1}(\pi, 3)$ in the direction of $v(3,1)$.
c) Find the standard linear approximation of $f(x, y)$ at the point $(\pi, 3)$ then use to estimate $f(\pi, 2.99)$. Approximate the error.
4. (10 points) Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}}{x^{4}+y^{2}}$ does not exist while $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}}{x^{2}+y^{2}}=0$.
5. (20 points)Suppose that over a certain region of space the electric potential V is given by

$$
V(x, y, z)=5 x^{2}-3 x y+x y z
$$

a) Find the rate of change of the potential at $P(3,4,5)$ in the direction of the vector $v=$ $i+j-k$.
b) In what direction does V change most rapidly at P.
c) What is the maximum rate of change at P.
6. (15 points)The length l, width w and height h of a box change with time. At a certain instant the dimensions are $l=1 m$ and $w=h=2 m$, and l and w are are increasing at a rate of $2 \mathrm{~m} / \mathrm{s}$ while h is decreasing at a rate of $3 \mathrm{~m} / \mathrm{s}$. At that instant, find the rates at which the volume and the surface area are changing. (The box is closed from above.)

